Step of Proof: anti_sym_functionality_wrt_iff
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
anti
sym
functionality
wrt
iff
:
T
:Type,
R
,
R'
:(
T
T
).
(
x
,
y
:
T
.
R
(
x
,
y
)
R'
(
x
,
y
))
(AntiSym(
T
;
x
,
y
.
R
(
x
,
y
))
AntiSym(
T
;
x
,
y
.
R'
(
x
,
y
)))
latex
by
InteriorProof
((((((Unfold `anti_sym` 0)
CollapseTHENM (RepD))
)
CollapseTHENM (RWW "-1" 0
CollapseTHENM (RWW
))
)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
CollapseTHENA ((Au
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
R
:
T
T
C1:
3.
R'
:
T
T
C1:
4.
x
,
y
:
T
.
R
(
x
,
y
)
R'
(
x
,
y
)
C1:
(
x
,
y
:
T
.
R'
(
x
,
y
)
R'
(
y
,
x
)
(
x
=
y
))
(
x
,
y
:
T
.
R'
(
x
,
y
)
R'
(
y
,
x
)
(
x
=
y
))
C
.
Definitions
P
Q
,
P
&
Q
,
P
Q
,
t
T
,
x
(
s1
,
s2
)
,
P
Q
,
x
:
A
.
B
(
x
)
,
Lemmas
iff
wf
origin